首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3930篇
  免费   190篇
  国内免费   24篇
  2023年   76篇
  2022年   105篇
  2021年   292篇
  2020年   169篇
  2019年   194篇
  2018年   264篇
  2017年   162篇
  2016年   235篇
  2015年   286篇
  2014年   309篇
  2013年   324篇
  2012年   327篇
  2011年   272篇
  2010年   178篇
  2009年   157篇
  2008年   161篇
  2007年   143篇
  2006年   107篇
  2005年   104篇
  2004年   65篇
  2003年   56篇
  2002年   37篇
  2001年   6篇
  2000年   6篇
  1999年   9篇
  1998年   11篇
  1997年   6篇
  1996年   6篇
  1995年   8篇
  1994年   6篇
  1993年   8篇
  1992年   8篇
  1991年   4篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1974年   3篇
  1972年   1篇
  1968年   1篇
排序方式: 共有4144条查询结果,搜索用时 15 毫秒
101.
Abstract

In the present study, the effectiveness of water hyacinth and water lettuce was tested for the phytoremediation of landfill leachate for the period of 15?days. Fifteen plastic containers were used in experimental setup where aquatic plants were fitted as a floating bed with the help of thermo-pole sheet. It was observed that both plants significantly (p?<?0.05/p?<?0.01/p?<?0.001) reduce the physicochemical parameters pH, TDS, BOD, COD and heavy metals like Zn, Pb, Fe, Cu and Ni from landfill leachate. Maximum reduction in these parameters was obtained at 50% and 75% landfill leachate treatment and their removal rate gradually increased from day 3 to day 15 of the experiment. The maximum removal rate for heavy metals such as for Zn (80–90%), Fe (83–87%) and Pb (76–84%) was attained by Eichhornia crassipes and Pistia stratiotes. Value of bioconcentration and translocation factor was less than 1 which indicates the low transport of heavy metals from roots to the above-ground parts of the plants. Both these plants accumulate heavy metals inside their body without showing much reduction in growth and showing tolerance to all the present metals. Therefore, results obtained from the study suggest that these aquatic plants are suitable candidate for the removal of pollution load from landfill leachate.  相似文献   
102.
Polycyclic aromatic hydrocarbons (PAHs) contamination has been considered as one of the major environmental concerns for farmland soil all over the world including China. Due to small per capita land area, to find crops or vegetable, which could not only degrade the PAHs contaminants but also would not concentrate PAHs, was particularly important. Celery was selected as the phytoremediator in this experiment, and the soil enzyme activity, PAHs-degrading microorganisms, and the speciation of PAHs in soil were studied. The results showed that celery could significantly enhance the remediation of PAHs compared with the controlled experiment after 90 days (p< 0.01), and the removal efficiency were 31.29%, 30.79%, and 50.21% in the soil, non-rhizosphere soil, and rhizosphere soil, respectively. The soil enzyme activity and PAHs-degrading microorganisms significantly increased in rhizosphere soil compared with non-rhizosphere soil (p< 0.05), and the bioaccessibility of PAHs in soil could have been enhanced in the presence of celery root exudates. Those would help the bioremediation of PAHs by soil microorganisms. Meanwhile, the concentration of PAHs in the edible portion of celery was only 17.13 ± 1.24 μg/kg, and the bioconcentration factors in the aboveground part of celery were only 0.025. This study provides a potential in-site farmland soil phytoremediation technology that could have practical utility.  相似文献   
103.
Plasmonics - Effect of different gold (Au) grating structures on light absorption in solar cell is investigated by finite elemental analysis using COMSOL multiphysics-RF module. The geometry of the...  相似文献   
104.
International Journal of Peptide Research and Therapeutics - Bovine milk protein, fermented with LC (Lactobacillus casei) was used to evaluate its ACE inhibitory activity in-vitro. After evaluating...  相似文献   
105.
106.
The present study aimed to investigate the effects of organic carbon sources, cultivation methods, and environmental factors on growth and lipid content of Pavlova lutheri for biodiesel production. In the 250-mL flask bioreactors, P. lutheri was cultivated in the modified artificial seawater (ASW) medium containing glucose, glycerol, sodium acetate, or sucrose as an organic carbon substrate. The effects of different growth conditions (phototrophic, mixotrophic, and heterotrophic) and environmental factors such as photoperiod, light intensity, and salinity were evaluated. Growth of P. lutheri was inhibited under heterotrophy but was enhanced in mixotrophy as compared to phototrophy. Biomass and lipid content of P. lutheri were significantly (p < 0.05) affected by changing photoperiod, light intensity, and salinity. Higher biomass concentration and lipid content were observed at a light intensity of 100 ± 2 μmol photons m−2 s−1, 18 h photoperiod, and 30% salinity, in a modified ASW medium supplemented with 10 mmol sucrose. An increase in biomass concentration from 320 ± 25.53 to 1106 ± 18.52 mg L−1 and high lipid content of 31.11 ± 1.65% (w/w) were observed with the optimized culture conditions, demonstrating a significant (p < 0.05) enhancement in biomass and lipid content due to the improved culture conditions. The present study emphasizes the possible use of sucrose for biomass and lipid production with P. lutheri under the optimized culture conditions. Using low-cost and relatively easy accessible feedstock such as sucrose would be a valuable alternative for growing microalgae with enhanced lipid content.  相似文献   
107.
The present study was conducted to elucidate the role of phytobeneficial bacteria to control the cellular oxidative damage in maize (Zea mays L.) plants caused by salinity. Bacteria were isolated from the rhizosphere of kallar grass (Leptochloa fusca L.) through serial dilution method and taxonomically identified on the basis of their 16S ribosomal RNA gene sequencing. In vitro phosphate solubilization, indole-3-acetic acid (IAA) synthesis, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity were evaluated by solubilization index measurement, colorimetric method, and turbidity assay, respectively. In the pot experiment, the impact of single and mixed inoculation of these strains at four levels (0, 50, 100, and 200 mM) of salt stress was evaluated in terms of growth and physiological response of maize plants to salinity. The bacterial strains (STN-1, STN-5, and STN-14) were taxonomically classified as Staphylococcus spp. At 5% NaCl level, the strains demonstrated substantial potential for phosphate solubilization, ACC deaminase activity, and IAA production both with and without tryptophan. The inoculation of strains STN-1, STN-5, and mixed inoculation resulted in substantial growth improvement of maize plants along with increased antioxidant enzyme activity and decreased levels of reactive oxygen species. In addition, single inoculation of STN-1 and STN-5 along with mixed inoculation augmented the uptake of N, P, K, and Ca+2 and reduced Na+ uptake. Current results demonstrated that the strains STN-1 and STN-5 modulated stress-responsive mechanisms and regulated ion balance in induced salinity to promote maize growth.  相似文献   
108.
Carbonaceous materials are widely employed to host Li for stable and safe Li metal batteries while relatively little effort is devoted to tailoring the surface properties of carbon to facilitate uniform Li plating. Herein, the correlation between Li plating behavior and the surface characteristics of electrospun porous carbon nanofibers (PCNFs) is systemically elucidated through experiments and theoretical calculations. It is revealed that the neat carbon surface suffers from severe lattice mismatch with Li metal, hindering uniform Li plating. In contrast, open pores created on the PCNF surface serve as active sites for controlled initial nucleation of Li. The introduction of oxygenated functional groups further facilitates the nucleation of Li on PCNFs through the largely reduced nucleation energy barrier. The Li film uniformly deposited on PCNFs enables efficient use of the whole carbon surface, giving rise to enhanced cyclic stability of the electrode. When used as an anode in lithium–sulfur batteries, the modified electrode delivers an excellent energy density of 385 Wh kg?1 after 100 cycles. The fundamental correlation established in this study is universal to all types of carbonaceous materials and sheds new light on the rational design of high‐performance Li metal anodes by controlling the initial Li nucleation.  相似文献   
109.
Bioprocess and Biosystems Engineering - Polyhydroxyalkanoates (PHAs) are biological plastics that are sustainable alternative to synthetic ones. Numerous microorganisms have been identified as PHAs...  相似文献   
110.
Metabolic alterations in prostate cancer (PC) are associated with progression and aggressiveness. However, the underlying mechanisms behind PC metabolic functions are unknown. The authors’ group recently reported on the important role of centromere protein F (CENPF), a protein associated with the centromere–kinetochore complex and chromosomal segregation during mitosis, in PC MRI visibility. This study focuses on discerning the role of CENPF in metabolic perturbation in human PC3 cells. A series of bioinformatics analyses shows that CENPF is one gene that is strongly associated with aggressive PC and that its expression is positively correlated with metastasis. By identifying and reconstructing the CENPF network, additional associations with lipid regulation are found. Further untargeted metabolomics analysis using gas chromatography‐time‐of‐flight‐mass spectrometry reveals that silencing of CENPF alters the global metabolic profiles of PC cells and inhibits cell proliferation, which suggests that CENPF may be a critical regulator of PC metabolism. These findings provide useful scientific insights that can be applied in future studies investigating potential targets for PC treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号